论文标题

瓦特·史特罗加茨随机图的特征值分布

The Eigenvalue Distribution of the Watt-Strogatz Random Graph

论文作者

Nakkirt, Poramate

论文摘要

本文研究了瓦茨 - strogatz随机图的特征值分布,该图被称为“小世界”随机图。小世界随机图的构造始于n个顶点的常规环晶格。每个侧面都有恰好的K邻居。使用概率p,特定顶点的每个下行邻居将独立地重新布线为图上的随机顶点,而无需进行自动环或重复。重新布线的过程始于顶点1的第一个相邻邻居,并以有序的方式延伸至顶点n的最远旁边邻居。必须考虑每个边缘一次。本文重点介绍用于表示小世界随机图的邻接矩阵A_N的特征值。我们计算了第一刻,第二时刻,并证明了限制的第三刻,因为n进入了特征值分布的无穷大。

This paper studies the eigenvalue distribution of the Watts-Strogatz random graph, which is known as the "small-world" random graph. The construction of the small-world random graph starts with a regular ring lattice of n vertices; each has exactly k neighbors with equally k/2 edges on each side. With probability p, each downside neighbor of a particular vertex will rewire independently to a random vertex on the graph without allowing for self-loops or duplication. The rewiring process starts at the first adjacent neighbor of vertex 1 and continues in an orderly fashion to the farthest downside neighbor of vertex n. Each edge must be considered once. This paper focuses on the eigenvalues of the adjacency matrix A_n, used to represent the small-world random graph. We compute the first moment, second moment, and prove the limiting third moment as n goes to infinity of the eigenvalue distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源