论文标题
通过修改的$φ$ -sobolev不平等关注泊松空间
Concentration on Poisson spaces via modified $Φ$-Sobolev inequalities
论文作者
论文摘要
研究了一般泊松过程功能的浓度特性。使用修改后的$φ$ -SOBOLOLEV不平等,建立了时刻的递归方案,这具有独立的关注。这适用于抽象泊松空间功能的衍生力矩和浓度不平等。一般结果在随机几何形状中的应用,即泊松缸模型和泊松随机多型。
Concentration properties of functionals of general Poisson processes are studied. Using a modified $Φ$-Sobolev inequality a recursion scheme for moments is established, which is of independent interest. This is applied to derive moment and concentration inequalities for functionals on abstract Poisson spaces. Applications of the general results in stochastic geometry, namely Poisson cylinder models and Poisson random polytopes, are presented as well.