论文标题
带有签名$(2,2)$的四维紧凑型Clifford-klein形式的伪里人对称空间
Four-dimensional compact Clifford-Klein forms of pseudo-Riemannian symmetric spaces with signature $(2, 2)$
论文作者
论文摘要
我们对不可约的四维对称空间进行分类$ g/h $,该空间接纳紧凑型Clifford-klein表格,其中$ g $是$ g/h $的转介型组。为此,我们开发了一种适用于特定1个连接可解决的对称空间的方法。我们还检查了Kobayashi对还原群体的猜想的“可解决的类似物”,并找到了一个证据,表明Kobayashi猜想中的还原假设至关重要。
We give a classification of irreducible four-dimensional symmetric spaces $G/H$ which admit compact Clifford-Klein forms, where $G$ is the transvection group of $G/H$. For this, we develop a method that applies to particular 1-connected solvable symmetric spaces. We also examine a `solvable analogue' of Kobayashi's conjecture for reductive groups and find an evidence that the reductive assumption in Kobayashi's conjecture is crucial.