论文标题

有限空间维度中无定形固体的新型弹性不稳定

Novel elastic instability of amorphous solids in finite spatial dimensions

论文作者

Shimada, Masanari, Mizuno, Hideyuki, Ikeda, Atsushi

论文摘要

最近,在理解无定形固体中异常振动激发方面取得了进展。在最低的频率区域中,振动频谱遵循非驱动四重奏定律,该定律持续到零频率而没有任何频率间隙。这种状态的无间隙振动密度(VDOS)表明眼镜处于不稳定性的边缘。现在,边际稳定性的这一特征被强调为眼镜理论中的关键概念。特别是,基于边际稳定性的弹性理论预测了无间隙VDO。但是,该理论产生了二次定律,\ textit {not}四分之一定律。为了解决这一不一致性,我们提出了一种新型的不稳定性,这与传统的不稳定性不同,并提出在上一项研究中考虑了新的不稳定,因此无定形固体在差异〜[m。 Shimada,H。Mizuno和A. Ikeda,软件,{\ bf 16},7279,2020]。在这项研究中,我们进一步扩展并详细介绍了这些不稳定性的结果。通过分析各种疾病的例子,我们证明了有限的空间维度中的真实玻璃可以通过拟议的新型不稳定性略有稳定。

Recently, progress has been made in the understanding of anomalous vibrational excitations in amorphous solids. In the lowest-frequency region, the vibrational spectrum follows a non-Debye quartic law, which persists up to zero frequency without any frequency gap. This gapless vibrational density of states (vDOS) suggests that glasses are on the verge of instability. This feature of marginal stability is now highlighted as a key concept in the theories of glasses. In particular, the elasticity theory based on marginal stability predicts the gapless vDOS. However, this theory yields a quadratic law and \textit{not} the quartic law. To address this inconsistency, we presented a new type of instability, which is different from the conventional one, and proposed that amorphous solids are marginally stable considering the new instability in the preceding study~[M. Shimada, H. Mizuno, and A. Ikeda, Soft Matter, {\bf 16}, 7279, 2020]. In this study, we further extend and detail the results for these instabilities. By analyzing various examples of disorder, we demonstrate that real glasses in finite spatial dimensions can be marginally stable by the proposed novel instability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源