论文标题
对单源深度无监督的视觉域适应的综述
A Review of Single-Source Deep Unsupervised Visual Domain Adaptation
论文作者
论文摘要
大规模标记的培训数据集使深度神经网络能够跨越各种基准视觉任务。但是,在许多应用中,获得大量标记数据的昂贵且耗时。为了应对有限的标记培训数据,许多人试图直接将在标记为源域的大型源域训练的模型直接应用于另一个稀疏标记或未标记的目标域上。不幸的是,由于存在域移位或数据集偏置,跨域的直接转移通常会表现不佳。域适应性是一种机器学习范式,旨在从可以在不同(但相关的)目标域上表现良好的源域中学习模型。在本文中,我们回顾了针对视觉任务的最新单源无监督域适应方法,并讨论了未来研究的新观点。我们从不同领域适应策略的定义和现有基准数据集的描述开始。然后,我们总结并比较单一源无监督的域适应方法的不同类别,包括基于差异的方法,对抗性歧视方法,对抗性生成方法和基于自学的方法。最后,我们通过挑战和可能的解决方案讨论未来的研究指示。
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks. However, in many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data. To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain. Unfortunately, direct transfer across domains often performs poorly due to the presence of domain shift or dataset bias. Domain adaptation is a machine learning paradigm that aims to learn a model from a source domain that can perform well on a different (but related) target domain. In this paper, we review the latest single-source deep unsupervised domain adaptation methods focused on visual tasks and discuss new perspectives for future research. We begin with the definitions of different domain adaptation strategies and the descriptions of existing benchmark datasets. We then summarize and compare different categories of single-source unsupervised domain adaptation methods, including discrepancy-based methods, adversarial discriminative methods, adversarial generative methods, and self-supervision-based methods. Finally, we discuss future research directions with challenges and possible solutions.