论文标题

GIF:生成的可解释面孔

GIF: Generative Interpretable Faces

论文作者

Ghosh, Partha, Gupta, Pravir Singh, Uziel, Roy, Ranjan, Anurag, Black, Michael, Bolkart, Timo

论文摘要

逼真的可视化和富有表现力的人脸的动画是一个漫长的挑战。 3D面部建模方法提供了参数控制,但另一方面会生成不切实际的图像,例如gan(生成对抗网络)输出照片真实的面部图像,但缺乏明确的控制。最近的方法通过尝试以无监督的方式解散不同因素,或者通过将控制后事后添加到预训练的模型中获得部分控制。然而,无条件的甘斯可能纠缠着以后难以撤消的因素。我们将生成模型定为预定义的控制参数,以鼓励在生成过程中分离。具体来说,我们在火焰上播放了stylegan2,这是一种生成的3D面模型。尽管在火焰参数上进行调节会产生不令人满意的结果,但我们发现对渲染的火焰几何形状和光度详细信息的调节效果很好。这为我们提供了一个名为GIF(生成可解释的面)的生成2D面模型,该模型提供了火焰的参数控制。在这里,可解释的是指不同参数的语义含义。给定形状,姿势,表达式,外观的参数,照明和其他样式向量的给定的火焰参数,GIF输出了光真实的面部图像。我们进行基于AMT的感知研究,以定量和定性地评估GIF遵循其条件的效果。代码,数据和训练的模型可在http://gif.is.tue.mpg.de上公开可用。

Photo-realistic visualization and animation of expressive human faces have been a long standing challenge. 3D face modeling methods provide parametric control but generates unrealistic images, on the other hand, generative 2D models like GANs (Generative Adversarial Networks) output photo-realistic face images, but lack explicit control. Recent methods gain partial control, either by attempting to disentangle different factors in an unsupervised manner, or by adding control post hoc to a pre-trained model. Unconditional GANs, however, may entangle factors that are hard to undo later. We condition our generative model on pre-defined control parameters to encourage disentanglement in the generation process. Specifically, we condition StyleGAN2 on FLAME, a generative 3D face model. While conditioning on FLAME parameters yields unsatisfactory results, we find that conditioning on rendered FLAME geometry and photometric details works well. This gives us a generative 2D face model named GIF (Generative Interpretable Faces) that offers FLAME's parametric control. Here, interpretable refers to the semantic meaning of different parameters. Given FLAME parameters for shape, pose, expressions, parameters for appearance, lighting, and an additional style vector, GIF outputs photo-realistic face images. We perform an AMT based perceptual study to quantitatively and qualitatively evaluate how well GIF follows its conditioning. The code, data, and trained model are publicly available for research purposes at http://gif.is.tue.mpg.de.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源