论文标题

部分可观测时空混沌系统的无模型预测

A Chirality-Based Quantum Leap

论文作者

Aiello, Clarice D., Abbas, Muneer, Abendroth, John M., Afanasev, Andrei, Agarwal, Shivang, Banerjee, Amartya S., Beratan, David N., Belling, Jason N., Berche, Bertrand, Botana, Antia, Caram, Justin R., Celardo, Giuseppe Luca, Cuniberti, Gianaurelio, Garcia-Etxarri, Aitzol, Dianat, Arezoo, Diez-Perez, Ismael, Guo, Yuqi, Gutierrez, Rafael, Herrmann, Carmen, Hihath, Joshua, Kale, Suneet, Kurian, Philip, Lai, Ying-Cheng, Lopez, Alexander, Medina, Ernesto, Mujica, Vladimiro, Naaman, Ron, Noormandipour, Mohammadreza, Palma, Julio L., Paltiel, Yossi, Petuskey, William T., Ribeiro-Silva, Joao Carlos, Saenz, Juan Jose, Santos, Elton J. G., Solyanik, Maria, Sorger, Volker J., Stemer, Dominik M., Ugalde, Jesus M., Valdes-Curiel, Ana, Varela, Solmar, Waldeck, David H., Weiss, Paul S., Zacharias, Helmut, Wang, Qing Hua

论文摘要

手性自由度发生在物质和电磁场中,构成了一项研究领域,该领域正在经历着近来观察到手性分子和工程纳米材料的手性诱导的自旋选择性(CISS)效应的重新兴趣。 CISS效应是一个事实,即通过纳米手性结构的电荷传输有利于特定的电子自旋取向,从而导致较大的室温自旋极化。对CISS效应的观察表明,旋转控制的机会以及从底部开始的室温量子设备的设计和制造,具有原子尺度的精度。任何依赖最佳电荷传输的技术,包括用于逻辑,传感和存储的量子设备,都可能受益于手性量子特性。这些属性可以从量子信息的角度进行理论上和实验研究,目前缺乏。一旦可以设计手性耦合以控制量子信息的存储,转导和操纵,对量子科学的含义对量子科学有未知的含义。这种前瞻性的观点提供了对手性影响的量子效应的实验和理论基础的调查,并为它们在启用室温量子技术中的未来作用提供了愿景。

Chiral degrees of freedom occur in matter and in electromagnetic fields and constitute an area of research that is experiencing renewed interest driven by recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials. The CISS effect underpins the fact that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision. Any technology that relies on optimal charge transport, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which is presently lacking. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking perspective provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects, and presents a vision for their future roles in enabling room-temperature quantum technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源