论文标题
包含网络:用于条件独立混合模型和无监督分类的非参数估算的独立分类器网络
InClass Nets: Independent Classifier Networks for Nonparametric Estimation of Conditional Independence Mixture Models and Unsupervised Classification
论文作者
论文摘要
我们介绍了一种新的基于机器学习的方法,我们称之为独立分类器网络(包含网络)技术,以进行条件独立混合模型(CIMMS)的非参数估计。我们将CIMM的估计作为多类分类问题,因为将数据集分为不同的类别自然会导致混合模型的估计。包含网络由多个独立分类器神经网络(NNS)组成,每个神经网络(NNS)处理CIMM的一个变体之一。通过使用合适的成本功能同时训练单个NN,将CIMM拟合到数据中。 NN近似任意功能的能力使我们的技术非参数。进一步利用了NNS的功能,我们允许该模型的有条件独立的变体是个体高维的,这是我们技术的主要优势,而不是现有的非基于基于基于的非校准的方法。我们以双变量CIMM的非参数可识别性的形式得出了一些新的结果,该结果是必要的和(不同的)足够条件的双变量CIMM。我们将公开实施包含网络作为一个名为Raindancesvi的Python软件包,并通过几个习惯验证了我们的包含网络技术。我们的方法还具有无监督和半监督分类问题的应用。
We introduce a new machine-learning-based approach, which we call the Independent Classifier networks (InClass nets) technique, for the nonparameteric estimation of conditional independence mixture models (CIMMs). We approach the estimation of a CIMM as a multi-class classification problem, since dividing the dataset into different categories naturally leads to the estimation of the mixture model. InClass nets consist of multiple independent classifier neural networks (NNs), each of which handles one of the variates of the CIMM. Fitting the CIMM to the data is performed by simultaneously training the individual NNs using suitable cost functions. The ability of NNs to approximate arbitrary functions makes our technique nonparametric. Further leveraging the power of NNs, we allow the conditionally independent variates of the model to be individually high-dimensional, which is the main advantage of our technique over existing non-machine-learning-based approaches. We derive some new results on the nonparametric identifiability of bivariate CIMMs, in the form of a necessary and a (different) sufficient condition for a bivariate CIMM to be identifiable. We provide a public implementation of InClass nets as a Python package called RainDancesVI and validate our InClass nets technique with several worked out examples. Our method also has applications in unsupervised and semi-supervised classification problems.