论文标题

使用GMPHD过滤器和基于面具的亲和力融合在线多对象跟踪和细分

Online Multi-Object Tracking and Segmentation with GMPHD Filter and Mask-based Affinity Fusion

论文作者

Song, Young-min, Yoon, Young-chul, Yoon, Kwangjin, Jeon, Moongu, Lee, Seong-Whan, Pedrycz, Witold

论文摘要

在本文中,我们提出了一种非常实用的完全在线多对象跟踪和分割(MOTS)方法,该方法将实例分割结果作为输入。所提出的方法基于高斯混合物概率假设密度(GMPHD)滤波器,分层数据关联(HDA)和基于面具的亲和力融合(MAF)模型,以实现高性能在线跟踪。 HDA由两个关联组成:段到轨道和轨道到轨道关联。一种用于位置和运动的亲和力是通过使用GMPHD过滤器计算的,而另一个亲和力是通过使用来自单个对象跟踪器(例如内核化相关滤波器)的响应来计算外观的另一个亲和力。通过使用得分级融合方法,例如称为MAF的Min-Max归一化,这两个亲和力简单地融合了。此外,为了减少假阳性段的数量,我们采用了基于面具的合并(面具合并)。提出的具有关键模块的MOTS框架:HDA,MAF和掩码合并,可以轻松扩展,以同时在并行处理中同时使用CPU执行多种类型的对象。此外,与许多需要密集的超参数优化的现有MOT方法不同,开发的框架仅需要简单的参数调整。在两个流行的MOT数据集的实验中,关键模块显示了一些改进。例如,与训练集中的基线方法相比,ID-开关减少了一半以上。总之,我们的跟踪器在测试集中实现了最先进的MOTS性能。

In this paper, we propose a highly practical fully online multi-object tracking and segmentation (MOTS) method that uses instance segmentation results as an input. The proposed method is based on the Gaussian mixture probability hypothesis density (GMPHD) filter, a hierarchical data association (HDA), and a mask-based affinity fusion (MAF) model to achieve high-performance online tracking. The HDA consists of two associations: segment-to-track and track-to-track associations. One affinity, for position and motion, is computed by using the GMPHD filter, and the other affinity, for appearance is computed by using the responses from a single object tracker such as a kernalized correlation filter. These two affinities are simply fused by using a score-level fusion method such as min-max normalization referred to as MAF. In addition, to reduce the number of false positive segments, we adopt mask IoU-based merging (mask merging). The proposed MOTS framework with the key modules: HDA, MAF, and mask merging, is easily extensible to simultaneously track multiple types of objects with CPU only execution in parallel processing. In addition, the developed framework only requires simple parameter tuning unlike many existing MOTS methods that need intensive hyperparameter optimization. In the experiments on the two popular MOTS datasets, the key modules show some improvements. For instance, ID-switch decreases by more than half compared to a baseline method in the training sets. In conclusion, our tracker achieves state-of-the-art MOTS performance in the test sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源