论文标题

使用类似的群体进行交互式和可解释的利率建议

Interactive and Explainable Point-of-Interest Recommendation using Look-alike Groups

论文作者

Omidvar-Tehrani, Behrooz, Viswanathan, Sruthi, Renders, Jean-Michel

论文摘要

推荐利益点(POI)在许多基于位置的应用程序中都浮出水面。文献包含采用历史签到的个性化和社会化的POI推荐方法来提出建议。但是,这些系统仍然缺乏可定制性(将基于会话的用户与系统的交互结合)和上下文(结合用户的情境环境),尤其是在冷启动情况下,几乎没有用户信息可用。在本文中,我们提出了Leakemind,这是一个POI推荐系统,通过利用在公共POI数据集中开采的类似外观群体来应对冷启动,可定制性,上下文性和解释性的挑战。 LakeMind重新制定了POI推荐问题,因为建议可以与用户的利益相符的可解释的外观群体(及其POI)。 LakeMind将POI推荐的任务视为一个探索过程,用户通过表达自己喜欢的POI来与系统进行交互,并且它们的交互作用会影响选择类似外观组的方式。此外,LakeMind采用“思维方式”,捕获了用户的实际情况和意图,并强制执行POI兴趣的语义。在一组广泛的实验中,我们在效率和有效性方面展示了建议相似的群体及其POI的方法的质量。

Recommending Points-of-Interest (POIs) is surfacing in many location-based applications. The literature contains personalized and socialized POI recommendation approaches which employ historical check-ins and social links to make recommendations. However these systems still lack customizability (incorporating session-based user interactions with the system) and contextuality (incorporating the situational context of the user), particularly in cold start situations, where nearly no user information is available. In this paper, we propose LikeMind, a POI recommendation system which tackles the challenges of cold start, customizability, contextuality, and explainability by exploiting look-alike groups mined in public POI datasets. LikeMind reformulates the problem of POI recommendation, as recommending explainable look-alike groups (and their POIs) which are in line with user's interests. LikeMind frames the task of POI recommendation as an exploratory process where users interact with the system by expressing their favorite POIs, and their interactions impact the way look-alike groups are selected out. Moreover, LikeMind employs "mindsets", which capture actual situation and intent of the user, and enforce the semantics of POI interestingness. In an extensive set of experiments, we show the quality of our approach in recommending relevant look-alike groups and their POIs, in terms of efficiency and effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源