论文标题

中级能量质子辐照:融合和裂变能量系统的快速,高保真材料测试

Intermediate energy proton irradiation: rapid, high-fidelity materials testing for fusion and fission energy systems

论文作者

Jepeal, Steven, Snead, Lance, Hartwig, Zachary

论文摘要

融合和先进的裂变发电厂需要先进的核材料才能在新的极端环境下运作。了解辐射损伤期间机械和功能性能的演变对于这些系统的设计和商业部署至关重要。现有方法的缺点可以通过一种新技术 - 中间能量质子辐照(IEPI)来解决,使用10-30 MeV质子的光束在直接测试工程性能之前,可以快速且均匀地损坏散装材料标本。 IEPI被证明可以在原发性损伤产生和变异的融合和裂变环境中获得高忠诚,通常优于核反应堆或典型的(低范围)离子照射。建模表明,在具有低温梯度和诱导放射性的散装材料标本(100-300μm)中,可以实现高剂量(每天0.1-1 dpa/dpa)。 IEPI的能力通过12 MEV质子辐照和镍合金的拉伸标本的12 MeV质子辐照和拉伸试验(合金718),从而再现中子诱导的数据。这些结果表明,IEPI可以在与反应器相关的条件下对材料进行高吞吐量评估,从而定位IEPI,以加速工程尺度的辐射损伤测试的速度,并允许更快,更有效的核能系统设计。

Fusion and advanced fission power plants require advanced nuclear materials to function under new, extreme environments. Understanding the evolution of mechanical and functional properties during radiation damage is essential to the design and commercial deployment of these systems. The shortcomings of existing methods could be addressed by a new technique - intermediate energy proton irradiation (IEPI) - using beams of 10 - 30 MeV protons to rapidly and uniformly damage bulk material specimens before direct testing of engineering properties. IEPI is shown to achieve high fidelity to fusion and fission environments in both primary damage production and transmutation, often superior to nuclear reactor or typical (low-range) ion irradiation. Modeling demonstrates that high doserates (0.1 - 1 DPA/per day) can be achieved in bulk material specimens (100 - 300 μm) with low temperature gradients and induced radioactivity. The capabilities of IEPI are demonstrated through a 12 MeV proton irradiation and tensile test of 250 μm thick tensile specimens of a nickel alloy (Alloy 718), reproducing neutron-induced data. These results demonstrate that IEPI enables high throughput assessment of materials under reactor-relevant conditions, positioning IEPI to accelerate the pace of engineering-scale radiation damage testing and allow for quicker and more effective design of nuclear energy systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源