论文标题

绝对与对流的不稳定性和脂质膜管中的前繁殖

Absolute vs Convective Instabilities and Front Propagation in Lipid Membrane Tubes

论文作者

Tchoufag, Joël, Sahu, Amaresh, Mandadapu, Kranthi K.

论文摘要

我们分析了生物膜管的稳定性,具有和没有脂质的碱基流动。膜动力学完全由二大的数字完全指定:众所周知的föppl-vonkármán数字$γ$和最近引入的scriven-love-lumn-number $ sl $,分别量化了基本张力和基本流量速度。对于不稳定的管子,局部扰动的增长率仅取决于$γ$,而$ sl $则控制着不稳定性的绝对或对流性质。此外,对不稳定管的非线性模拟揭示了最初局部的扰动导致传播前沿,从而在其尾流中留下了薄薄的萎缩管。根据$γ$的值,细管通过振荡或单调形状转变连接到未受干扰的区域 - 让人联想到最近对轴突缩回和萎缩的实验性观察。我们通过弱非线性分析阐明了我们的发现,该分析表明,膜动力学可以通过扩展的Fisher-Kolmogorov方程的模型近似。我们的研究通过识别出两个Lifshitz点的存在来阐明轴突形状的模式选择机制,在该点上,前动力学经历了稳定的振荡分叉。

We analyze the stability of biological membrane tubes, with and without a base flow of lipids. Membrane dynamics are completely specified by two dimensionless numbers: the well-known Föppl--von Kármán number $Γ$ and the recently introduced Scriven--Love number $SL$, respectively quantifying the base tension and base flow speed. For unstable tubes, the growth rate of a local perturbation depends only on $Γ$, whereas $SL$ governs the absolute or convective nature of the instability. Furthermore, nonlinear simulations of unstable tubes reveal an initially localized disturbance results in propagating fronts, which leave a thin atrophied tube in their wake. Depending on the value of $Γ$, the thin tube is connected to the unperturbed regions via oscillatory or monotonic shape transitions -- reminiscent of recent experimental observations on the retraction and atrophy of axons. We elucidate our findings through a weakly nonlinear analysis, which shows membrane dynamics may be approximated by a model of the class of extended Fisher--Kolmogorov equations. Our study sheds light on the pattern selection mechanism in axonal shapes by recognizing the existence of two Lifshitz points, at which the front dynamics undergo steady-to-oscillatory bifurcations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源