论文标题

可变恒星分类的高级星际信息学

Advanced Astroinformatics for Variable Star Classification

论文作者

Johnston, Kyle Burton

论文摘要

该项目概述了可变星分类算法方法的完整开发。随着Big-Data在天文学的出现,专业天文学家遇到了如何管理大量数据的问题,以及如何研究这些信息,以提高我们对宇宙的理解。尽管我们的重点将是基于光曲线数据和相关信息来识别可变恒星类型的机器学习方法的开发,但这项工作的目标之一是确认,真正的机器学习方法的发展必须不仅包括研究服务中的内容(功能,优化方法),而且还包括我们了解我们如何了解服务(性能分析)的研究。开始到末端系统开发策略的完整开发作为以下个人发展(仿真,培训,特征提取,检测,分类和绩效分析)。我们建议,在下一代大数据的即将到来的大数据(例如LSST)的大数据时代,一项完整的机器学习策略必须考虑这种类型的设计集成。

This project outlines the complete development of a variable star classification algorithm methodology. With the advent of Big-Data in astronomy, professional astronomers are left with the problem of how to manage large amounts of data, and how this deluge of information can be studied in order to improve our understanding of the universe. While our focus will be on the development of machine learning methodologies for the identification of variable star type based on light curve data and associated information, one of the goals of this work is the acknowledgment that the development of a true machine learning methodology must include not only study of what goes into the service (features, optimization methods) but a study on how we understand what comes out of the service (performance analysis). The complete development of a beginning-to-end system development strategy is presented as the following individual developments (simulation, training, feature extraction, detection, classification, and performance analysis). We propose that a complete machine learning strategy for use in the upcoming era of big data from the next generation of big telescopes, such as LSST, must consider this type of design integration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源