论文标题

Schur $ Q $ functions in Schur功能的双线性扩展:一种费米金方法

Bilinear expansion of Schur functions in Schur $Q$-functions: a fermionic approach

论文作者

Harnad, J., Orlov, A. Yu.

论文摘要

一种身份被得出表达Schur函数作为对成对的Schur $ Q $ functions的总和,从而概括了先前已知的特殊情况。这表明这是从他们的表示形式中作为带电或中性费米子创建和歼灭算子的产品的真空期望值(VEV),Wick的定理以及两种相互抗药性的中性费米子操作员的vev的分解身份。

An identity is derived expressing Schur functions as sums over products of pairs of Schur $Q$-functions, generalizing previously known special cases. This is shown to follow from their representations as vacuum expectation values (VEV's) of products of either charged or neutral fermionic creation and annihilation operators, Wick's theorem and a factorization identity for VEV's of products of two mutually anticommuting sets of neutral fermionic operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源