论文标题
使用SEGANET估算左心房射血分数估算,用于全自动分割Cine MRI
Left atrial ejection fraction estimation using SEGANet for fully automated segmentation of CINE MRI
论文作者
论文摘要
心房颤动(AF)是最常见的持续性心律不齐,其特征是心房的快速和不规则的电活激活。 AF的治疗通常是无效的,很少有心房生物标志物自动表征心房功能并有助于AF的治疗选择。左心房(LA)功能的临床指标,例如射血分数(EF)和主动性心房收缩射血分数(AEF)是有希望的,但到目前为止,通常必须依赖于从单板片段外推出的体积估计。在这项工作中,我们使用基于卷积神经网络(SEGANET)的左心房进行全自动分割研究LA的体积功能生物标志物。使用专门的数据增强方案对Seganet进行了训练,以短轴动态(CINE)磁共振图像(MRI)以全心覆盖范围获得所有心脏相。使用自动分割,我们绘制了LA的体积时间曲线,并自动估计LA EF和AEF。所提出的方法产生的高质量分割与手动分割相比(骰子得分[$ 0.93 \ pm 0.04 $],中位轮廓[$ 0.75 \ pm 0.31 $]毫米和Hausdorff距离[$ 4.59 \ $ 4.59 \ pm 2.06 $] mm)。 LA EF和AEF也与文献价值一致,并且AF患者的含量明显高于健康志愿者。我们的工作打开了自动估计多板Cine Cine MRI的LA体积和功能性生物标志物的可能性,绕过当前单板方法的局限性,并改善AF患者中房屋功能的表征。
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, characterised by a rapid and irregular electrical activation of the atria. Treatments for AF are often ineffective and few atrial biomarkers exist to automatically characterise atrial function and aid in treatment selection for AF. Clinical metrics of left atrial (LA) function, such as ejection fraction (EF) and active atrial contraction ejection fraction (aEF), are promising, but have until now typically relied on volume estimations extrapolated from single-slice images. In this work, we study volumetric functional biomarkers of the LA using a fully automatic SEGmentation of the left Atrium based on a convolutional neural Network (SEGANet). SEGANet was trained using a dedicated data augmentation scheme to segment the LA, across all cardiac phases, in short axis dynamic (CINE) Magnetic Resonance Images (MRI) acquired with full cardiac coverage. Using the automatic segmentations, we plotted volumetric time curves for the LA and estimated LA EF and aEF automatically. The proposed method yields high quality segmentations that compare well with manual segmentations (Dice scores [$0.93 \pm 0.04$], median contour [$0.75 \pm 0.31$] mm and Hausdorff distances [$4.59 \pm 2.06$] mm). LA EF and aEF are also in agreement with literature values and are significantly higher in AF patients than in healthy volunteers. Our work opens up the possibility of automatically estimating LA volumes and functional biomarkers from multi-slice CINE MRI, bypassing the limitations of current single-slice methods and improving the characterisation of atrial function in AF patients.