论文标题
深度图像denoising的未配对学习
Unpaired Learning of Deep Image Denoising
论文作者
论文摘要
我们研究了从一组未配对的干净和嘈杂的图像中学习盲图像剥落网络的任务。考虑到在大多数现实世界应用中收集未配对的嘈杂和干净的图像是可行的,因此通常是实用且有价值的。我们进一步假设噪声可以信号依赖,但在空间上是不相关的。为了促进对denoising网络的未配对学习,本文通过结合了自我监管的学习和知识蒸馏,介绍了两阶段的计划。对于自我监督的学习,我们建议一个扩张的盲点网络(D-BSN)仅从真实的嘈杂图像中学习deno。由于噪声的空间独立性,我们通过堆叠1x1卷积层来估算每个图像的噪声水平图。 D-BSN和图像特异性噪声模型(CNN \ _EST)均可通过最大限度地训练受约束的对数可能性。鉴于D-BSN和估计的噪声水平图的输出,可以根据贝叶斯的规则进一步获得改进的降级性能。至于知识蒸馏,我们首先将学习的噪声模型应用于清洁图像以合成一组配对的训练图像,并在第一个阶段使用真实的噪声图像和相应的DeNoising结果来形成另一个配对集。然后,可以通过使用这两个配对组训练现有的Denoising网络来提炼最终的Denoising模型。实验表明,我们未配对的学习方法在综合嘈杂图像和现实世界中的嘈杂照片上都在定量和定性评估方面表现出色。
We investigate the task of learning blind image denoising networks from an unpaired set of clean and noisy images. Such problem setting generally is practical and valuable considering that it is feasible to collect unpaired noisy and clean images in most real-world applications. And we further assume that the noise can be signal dependent but is spatially uncorrelated. In order to facilitate unpaired learning of denoising network, this paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation. For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images. Due to the spatial independence of noise, we adopt a network by stacking 1x1 convolution layers to estimate the noise level map for each image. Both the D-BSN and image-specific noise model (CNN\_est) can be jointly trained via maximizing the constrained log-likelihood. Given the output of D-BSN and estimated noise level map, improved denoising performance can be further obtained based on the Bayes' rule. As for knowledge distillation, we first apply the learned noise models to clean images to synthesize a paired set of training images, and use the real noisy images and the corresponding denoising results in the first stage to form another paired set. Then, the ultimate denoising model can be distilled by training an existing denoising network using these two paired sets. Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs in terms of quantitative and qualitative evaluation.