论文标题
Ligo-Virgo合并的贝叶斯分析:原始与天体物理黑洞种群
Bayesian analysis of LIGO-Virgo mergers: Primordial vs. astrophysical black hole populations
论文作者
论文摘要
我们对重力波中的黑洞合并事件是原始黑洞(PBH)合并的可能性进行了彻底的贝叶斯分析。使用来自对数正态质量函数的PBH二进制文件的最新合并速率模型,我们使用Ligo-Virgo的前两个观测运行中的数据来计算后参数约束和贝叶斯证据。我们认为由于PBH的二进制可能破坏了二进制的理论不确定性,这可以显着抑制合并率。我们还考虑了简单的天体动机模型,并发现这些模型比贝叶斯证据比率量化的PBH方案果断地偏爱这些模型。请仔细注意参数先验的影响和模型拟合的质量,我们表明可以通过将预测的CHIRP质量分布与数据的数据比较来理解证据比。我们确定chirp质量的后验预测分布是区分模型的重要工具。与天体物理模型相比,所有合并都是PBH二进制文件的模型,部分是由于对具有$ \ MATHCAL {M} _ {\ rm chirp} \ rm chirp} \ gtrsim 40 \ \,m_ \ odot $ and of-odot $ and-od od od skewness的重预测的过度预测,而不是观察到的范围。我们发现,通过添加最大质量截止,双峰质量函数或在后期施加PBH二进制文件,因此无法显着改善拟合度。我们认为,成功的PBH模型必须显着修改初始质量函数的对数正态形状,或者放弃所有观察到的合并二进制文件都是原始的假设。我们开发并应用技术,用于分析具有重力波数据的PBH模型,这对于随着重力波源样本量的增加而言,这对于强大的统计推断是必不可少的。
We conduct a thorough Bayesian analysis of the possibility that the black hole merger events seen in gravitational waves are primordial black hole (PBH) mergers. Using the latest merger rate models for PBH binaries drawn from a lognormal mass function we compute posterior parameter constraints and Bayesian evidences using data from the first two observing runs of LIGO-Virgo. We account for theoretical uncertainty due to possible disruption of the binary by surrounding PBHs, which can suppress the merger rate significantly. We also consider simple astrophysically motivated models and find that these are favoured decisively over the PBH scenario, quantified by the Bayesian evidence ratio. Paying careful attention to the influence of the parameter priors and the quality of the model fits, we show that the evidence ratios can be understood by comparing the predicted chirp mass distribution to that of the data. We identify the posterior predictive distribution of chirp mass as a vital tool for discriminating between models. A model in which all mergers are PBH binaries is strongly disfavoured compared with astrophysical models, in part due to the over-prediction of heavy systems having $\mathcal{M}_{\rm chirp} \gtrsim 40 \, M_\odot$ and positive skewness over the range of observed masses which does not match the observations. We find that the fit is not significantly improved by adding a maximum mass cut-off, a bimodal mass function, or imposing that PBH binaries form at late times. We argue that a successful PBH model must either modify the lognormal shape of the initial mass function significantly or abandon the hypothesis that all observed merging binaries are primordial. We develop and apply techniques for analysing PBH models with gravitational wave data which will be necessary for robust statistical inference as the gravitational wave source sample size increases.