论文标题
液体界面处的软颗粒:从分子粒子结构到集体相。
Soft particles at liquid interfaces: From molecular particle architecture to collective phase behavior
论文作者
论文摘要
当吸附到液体界面上时,诸如微凝胶和核壳颗粒之类的软颗粒会发生显着和各向异性变形。反过来,这会导致压缩后的复杂相行为。在这里,我们开发了一个多尺度框架,以合理地将分子粒子结构与所得的界面形态联系起来,并最终与集体界面相行为,使我们能够识别出二维连续,异构结构和异构结构固体固体固体质体的关键单粒子特性。我们的方法解决了实验和模拟之间的现有差异,因此提供了一个统一的框架来描述界面软粒子系统中的相变。我们通过合成三种不同的聚(N-异丙丙烯酰胺)软粒子结构来为我们的理性方法建立原理证明,每种构建体系结构对应于不同的靶向相行为。同时,我们引入了一种通用且高效的粗粒仿真方法,可充分捕获每个软粒子系统的定性关键特征。我们的仿真模型中的新成分是使用辅助自由度,以明确说明颗粒的肿胀和崩溃,这是表面压力的函数。值得注意的是,这些合并的努力使我们能够建立单个组分系统中异质结构过渡到链相的第一个实验证明,以及在二维等速过渡中的硅硅中的第一个准确性。总体而言,我们的多尺度框架在分子和纳米级的物理化学软性粒子特征与宏观上的集体自组装现象学之间提供了一个桥梁,这为具有按需界面行为的新型材料铺平了道路。
Soft particles such as microgels and core-shell particles can undergo significant and anisotropic deformations when adsorbed to a liquid interface. This, in turn, leads to a complex phase behavior upon compression. Here we develop a multiscale framework to rationally link the molecular particle architecture to the resulting interfacial morphology and, ultimately, to the collective interfacial phase behavior, enabling us to identify the key single-particle properties underlying two-dimensional continuous, heterostructural, and isostructural solid-solid transitions. Our approach resolves existing discrepancies between experiments and simulations and thus provides a unifying framework to describe phase transitions in interfacial soft-particle systems. We establish proof-of-principle for our rational approach by synthesizing three different poly(N-isopropylacrylamide) soft-particle architectures, each of which corresponds to a different targeted phase behavior. In parallel, we introduce a versatile and highly efficient coarse-grained simulation method that adequately captures the qualitative key features of each soft-particle system; the novel ingredient in our simulation model is the use of auxiliary degrees of freedom to explicitly account for the swelling and collapse of the particles as a function of surface pressure. Notably, these combined efforts allow us to establish the first experimental demonstration of a heterostructural transition to a chain phase in a single-component system, as well as the first accurate in silico account of the two-dimensional isostructural transition. Overall, our multiscale framework provides a bridge between physicochemical soft-particle characteristics at the molecular- and nanoscale and the collective self-assembly phenomenology at the macroscale, paving the way towards novel materials with on-demand interfacial behavior.