论文标题
专门的小组相对双曲线组
Specializing cubulated relatively hyperbolic groups
论文作者
论文摘要
在Arxiv中:1204.2810 Agol通过确认明智的猜想来证明虚拟的haken和虚拟纤维猜想:每个库的双曲线群几乎都是特别的。我们将此结果扩展到相结合的相对双曲基团,对抛物线亚组的假设最少。我们的证明是通过首先取消接受以通过受控稳定器(一种弱相对几何作用)而进行不当动作的,然后进行填充以获得许多立方体双曲线。我们运用结果来证明某些立方体或部分组相对双曲线的相对大炮猜想。 我们的主要结果之一(定理A)通过不同的方法A OREGON-REYES定理恢复(Arxiv:2003.12702)。
In arXiv:1204.2810 Agol proved the Virtual Haken and Virtual Fibering Conjectures by confirming a conjecture of Wise: Every cubulated hyperbolic group is virtually special. We extend this result to cocompactly cubulated relatively hyperbolic groups with minimal assumptions on the parabolic subgroups. Our proof proceeds by first recubulating to obtain an improper action with controlled stabilizers (a weakly relatively geometric action), and then Dehn filling to obtain many cubulated hyperbolic quotients. We apply our results to prove the Relative Cannon Conjecture for certain cubulated or partially cubulated relatively hyperbolic groups. One of our main results (Theorem A) recovers via different methods a theorem of Oregón-Reyes (arXiv:2003.12702).