论文标题

用于在整数上求解非线性公式的不完整SMT技术

Incomplete SMT Techniques for Solving Non-Linear Formulas over the Integers

论文作者

Borralleras, Cristina, Larraz, Daniel, Oliveras, Albert, Rodriguez-Carbonell, Enric, Rubio, Albert

论文摘要

我们提出了在无量词的非线性整数算术,SMT(QF-NIA)的理论上解决令人满意的模量理论问题的新方法,该方法包括用整数多项式约束来确定地面公式的满意度。在先前的工作之后,我们建议通过将它们减少为线性算术来解决SMT(QF-NIA)实例:通过使用新鲜变量抽象并在具有有限域的整数变量上进行case分开,从而使非线性单项线性化。对于没有有限域的变量,我们可以通过施加较低和上限来人为地引入一个变量,并迭代地扩大它直到找到溶液(或程序时间)。 该方法成功的关键是在每次迭代中确定必须放大的域。以前,使用不满意的核心来识别要更改的域,但是没有关于新域的大小的线索。在这里,我们通过分析针对优化问题的解决方案来解释指导这一过程的两种新方法:(i)通过Max-SMT求解器和(ii)最大程度地减少违反人造域边界的数量,以最大程度地减少通过优化Modulo理论(OMT)求解的人工领域的距离。使用此基于SMT的优化技术,可以平稳扩展该方法,还可以在非线性整数算术上求解Max-SMT问题。最后,我们利用所得的Max-SMT(QF-NIA)技术在验证和合成应用中通常出现的量化非线性算术片段中求解$ \ forall $公式。

We present new methods for solving the Satisfiability Modulo Theories problem over the theory of Quantifier-Free Non-linear Integer Arithmetic, SMT(QF-NIA), which consists in deciding the satisfiability of ground formulas with integer polynomial constraints. Following previous work, we propose to solve SMT(QF-NIA) instances by reducing them to linear arithmetic: non-linear monomials are linearized by abstracting them with fresh variables and by performing case splitting on integer variables with finite domain. For variables that do not have a finite domain, we can artificially introduce one by imposing a lower and an upper bound, and iteratively enlarge it until a solution is found (or the procedure times out). The key for the success of the approach is to determine, at each iteration, which domains have to be enlarged. Previously, unsatisfiable cores were used to identify the domains to be changed, but no clue was obtained as to how large the new domains should be. Here we explain two novel ways to guide this process by analyzing solutions to optimization problems: (i) to minimize the number of violated artificial domain bounds, solved via a Max-SMT solver, and (ii) to minimize the distance with respect to the artificial domains, solved via an Optimization Modulo Theories (OMT) solver. Using this SMT-based optimization technology allows smoothly extending the method to also solve Max-SMT problems over non-linear integer arithmetic. Finally we leverage the resulting Max-SMT(QF-NIA) techniques to solve $\exists \forall$ formulas in a fragment of quantified non-linear arithmetic that appears commonly in verification and synthesis applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源