论文标题
量子热力学过程的几何优化
Geometric optimisation of quantum thermodynamic processes
论文作者
论文摘要
差异几何形状提供了一个强大的框架,用于优化和表征经典和量子的有限时间热力学过程。在这里,我们从热力学长度概念的教学介绍开始。我们在量子制度中审查并连接其出现的不同框架:绝热驱动的封闭系统,与时间有关的lindblad主方程和离散过程。然后提出了截至熵产生的几何下限,这代表了原始经典结合的量子泛化。在此之后,我们审查并开发了一些一般原则,以优化线性反应制度中的热力学过程。这些包括根据热力学度量的恒定控制速度变化,缺乏量子相干性以及Carnot发动机的热容量和放松时间之间最大比率周围的小周期的最佳性。
Differential geometry offers a powerful framework for optimising and characterising finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical introduction to the notion of thermodynamic length. We review and connect different frameworks where it emerges in the quantum regime: adiabatically driven closed systems, time-dependent Lindblad master equations, and discrete processes. A geometric lower bound on entropy production in finitetime is then presented, which represents a quantum generalisation of the original classical bound. Following this, we review and develop some general principles for the optimisation of thermodynamic processes in the linear-response regime. These include constant speed of control variation according to the thermodynamic metric, absence of quantum coherence, and optimality of small cycles around the point of maximal ratio between heat capacity and relaxation time for Carnot engines.