论文标题

偏见的意见动力:魔鬼在细节中

Biased Opinion Dynamics: When the Devil Is in the Details

论文作者

Anagnostopoulos, Aris, Becchetti, Luca, Cruciani, Emilio, Pasquale, Francesco, Rizzo, Sara

论文摘要

当存在对两个可能的观点之一的偏见时,我们调查了多代理网络中的意见动态;例如,反映现状与优越的替代方案。从分享代表现状的所有初始意见的所有代理人开始,系统就以步骤发展。在每个步骤中,一个代理在随机中均匀选择的一定概率$α$,并且概率$1-α$遵循基础更新规则,以根据其邻居持有的内容来修改其意见。我们在两个众所周知的更新规则(即多数派和选民)下分析了由此产生的过程的收敛。我们提出的框架表现出丰富的结构,在拓扑和基础更新规则之间具有非明显的相互作用。例如,对于选民规则,我们表明收敛速度对基本拓扑没有显着依赖,而图像在大多数规则下完全变化,而网络密度会对收敛产生负面影响。我们认为,我们提出的模型同时是简单,丰富和模块化的同时,在统一环境中提供了偏见,基本观点动态和社会结构之间相互作用的数学表征。

We investigate opinion dynamics in multi-agent networks when a bias toward one of two possible opinions exists; for example, reflecting a status quo vs a superior alternative. Starting with all agents sharing an initial opinion representing the status quo, the system evolves in steps. In each step, one agent selected uniformly at random adopts the superior opinion with some probability $α$, and with probability $1 - α$ it follows an underlying update rule to revise its opinion on the basis of those held by its neighbors. We analyze convergence of the resulting process under two well-known update rules, namely majority and voter. The framework we propose exhibits a rich structure, with a non-obvious interplay between topology and underlying update rule. For example, for the voter rule we show that the speed of convergence bears no significant dependence on the underlying topology, whereas the picture changes completely under the majority rule, where network density negatively affects convergence. We believe that the model we propose is at the same time simple, rich, and modular, affording mathematical characterization of the interplay between bias, underlying opinion dynamics, and social structure in a unified setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源