论文标题
使用机器学习和时间序列卫星图像绘制新的非正式定居点图像:委内瑞拉移民危机中的应用程序
Mapping New Informal Settlements using Machine Learning and Time Series Satellite Images: An Application in the Venezuelan Migration Crisis
论文作者
论文摘要
自2014年以来,近200万委内瑞拉人逃到哥伦比亚,在现代历史上最大的人道主义危机之一中逃脱了一个经济上破坏的国家。非政府组织和地方政府部门面临着确定,评估和监测快速成长的移民社区的挑战,以提供紧急的人道主义援助。但是,随着许多流离失所的人口生活在全国各地的非正式定居点地区,在大型领土上找到移民定居点可能是一个重大挑战。为了解决这个问题,我们提出了一种新颖的方法,用于快速,成本效益,使用机器学习和公共可访问的Sentinel-2时间序列卫星图像定位新的和新兴的非正式定居点。我们证明了该方法在识别哥伦比亚潜在的委内瑞拉移民定居点的有效性,这些定居点已在2015年至2020年之间出现。最后,我们强调了分类后验证的重要性,并提出了一种两步验证方法,包括(1)使用Google Earth和(2)通过(2)通过(2)通过前提应用程序的远程验证的远程验证,一个远程验证。
Since 2014, nearly 2 million Venezuelans have fled to Colombia to escape an economically devastated country during what is one of the largest humanitarian crises in modern history. Non-government organizations and local government units are faced with the challenge of identifying, assessing, and monitoring rapidly growing migrant communities in order to provide urgent humanitarian aid. However, with many of these displaced populations living in informal settlements areas across the country, locating migrant settlements across large territories can be a major challenge. To address this problem, we propose a novel approach for rapidly and cost-effectively locating new and emerging informal settlements using machine learning and publicly accessible Sentinel-2 time-series satellite imagery. We demonstrate the effectiveness of the approach in identifying potential Venezuelan migrant settlements in Colombia that have emerged between 2015 to 2020. Finally, we emphasize the importance of post-classification verification and present a two-step validation approach consisting of (1) remote validation using Google Earth and (2) on-the-ground validation through the Premise App, a mobile crowdsourcing platform.