论文标题

在协作过滤推荐系统中,用户发现的迭代属性的理论建模

Theoretical Modeling of the Iterative Properties of User Discovery in a Collaborative Filtering Recommender System

论文作者

Khenissi, Sami, Boujelbene, Mariem, Nasraoui, Olfa

论文摘要

推荐系统中的封闭反馈循环是一种常见环境,可以导致不同类型的偏见。几项研究通过设计方法来减轻对建议的影响来处理这些偏见。但是,大多数现有的研究都不考虑系统的迭代行为,在该系统中,封闭反馈回路在将不同的偏见纳入建议步骤的几个部分中起着至关重要的作用。 我们提出了一个理论框架,以建模在反馈回路设置中运行的推荐系统的不同组件的渐近演化,并在用户发现和盲点的可量化测量方面得出理论界限和收敛属性。我们还使用现实生活中的数据集从经验上验证了我们的理论发现,并在我们的理论框架内经验测试基本探索策略的效率。 我们的发现为量化反馈循环的影响以及设计人工智能和机器学习算法的理论基础是明确纳入机器学习和推荐过程中反馈循环的迭代性质。

The closed feedback loop in recommender systems is a common setting that can lead to different types of biases. Several studies have dealt with these biases by designing methods to mitigate their effect on the recommendations. However, most existing studies do not consider the iterative behavior of the system where the closed feedback loop plays a crucial role in incorporating different biases into several parts of the recommendation steps. We present a theoretical framework to model the asymptotic evolution of the different components of a recommender system operating within a feedback loop setting, and derive theoretical bounds and convergence properties on quantifiable measures of the user discovery and blind spots. We also validate our theoretical findings empirically using a real-life dataset and empirically test the efficiency of a basic exploration strategy within our theoretical framework. Our findings lay the theoretical basis for quantifying the effect of feedback loops and for designing Artificial Intelligence and machine learning algorithms that explicitly incorporate the iterative nature of feedback loops in the machine learning and recommendation process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源