论文标题
深度概率特征 - 量表跟踪
Deep Probabilistic Feature-metric Tracking
论文作者
论文摘要
来自RGB-D图像的密集图像对齐仍然是现实应用应用程序的关键问题,尤其是在挑战性的照明条件和宽基线设置下。在本文中,我们提出了一个新的框架,以学习一张像素深度特征图和由卷积神经网络(CNN)预测的深度特征的不确定性图,该图共同制定了两次观看式约束的深度概率特征 - 构图残差,可以在粗到加斯 - 纽顿在粗到5的优化框架中最小化,该残留物可以最小化。此外,我们的网络预测了一个深刻的初始姿势,以更快,更可靠的收敛性。优化步骤是可区分的,并且可以以端到端的方式进行训练。由于其概率本质,我们的方法很容易与其他残留物相结合,在那里我们与ICP结合了。实验结果证明了TUM RGB-D数据集和3D刚性对象跟踪数据集的最新性能。我们进一步证明了方法的鲁棒性和融合。
Dense image alignment from RGB-D images remains a critical issue for real-world applications, especially under challenging lighting conditions and in a wide baseline setting. In this paper, we propose a new framework to learn a pixel-wise deep feature map and a deep feature-metric uncertainty map predicted by a Convolutional Neural Network (CNN), which together formulate a deep probabilistic feature-metric residual of the two-view constraint that can be minimised using Gauss-Newton in a coarse-to-fine optimisation framework. Furthermore, our network predicts a deep initial pose for faster and more reliable convergence. The optimisation steps are differentiable and unrolled to train in an end-to-end fashion. Due to its probabilistic essence, our approach can easily couple with other residuals, where we show a combination with ICP. Experimental results demonstrate state-of-the-art performances on the TUM RGB-D dataset and the 3D rigid object tracking dataset. We further demonstrate our method's robustness and convergence qualitatively.