论文标题
$ \ MATHCAL {s}^{*}(ϕ)$和$ \ MATHCAL {C}(ϕ)$ - RADII用于某些特殊功能
$\mathcal{S}^{*}(ϕ)$ and $\mathcal{C}(ϕ)$-radii for some special functions
论文作者
论文摘要
在本文中,我们考虑分析函数的ma-minda类$ \ Mathcal {s}^{*}(ϕ):= \ {f \ in \ Mathcal {a}:at \ {f \ in \ Mathcal {a} :( 1+ {zf''(z)}/{f'(z)})\ prec ϕ(z)\} $在单位磁盘$ \ mathbb {d}上定义的定义$ \ MATHCAL {C}(1+αz)$,$ 0 <α\ leq 1 $解决找到尖锐的$ \ Mathcal {s}^{*}(ϕ)$ - radii和$ radii and $ \ nathcal {c}(c}(c)(ϕ)(ϕ)$ - radii $ radiizized专用功能,$ 1- $ 1-1-1-1-1-1-1( - 1-1)还考虑了强烈的星空半径。
In this paper, we consider the Ma-Minda classes of analytic functions $\mathcal{S}^{*}(ϕ):= \{f\in \mathcal{A} : ({zf'(z)}/{f(z)}) \prec ϕ(z) \}$ and $\mathcal{C}(ϕ):= \{f\in \mathcal{A} : (1+{zf''(z)}/{f'(z)}) \prec ϕ(z) \}$ defined on the unit disk $\mathbb{D}$ and show that the classes $\mathcal{S}^{*}(1+αz)$ and $\mathcal{C}(1+αz)$, $0<α\leq 1$ solve the problem of finding the sharp $\mathcal{S}^{*}(ϕ)$-radii and $\mathcal{C}(ϕ)$-radii for some normalized special functions, whenever $ϕ(-1)=1-α$. Radius of strongly starlikeness is also considered.