论文标题

Transmon量子计算机的超级计算机模拟

Supercomputer simulations of transmon quantum computers

论文作者

Willsch, Dennis

论文摘要

我们开发了一个由超导式转移矩阵组成的量子计算机的模拟器。仿真模型支持任意数量的传输和谐振器。量子门是由时间依赖性脉冲实现的。非平凡的效应,例如串扰,非计算状态的泄漏,透射器和谐振器之间的纠缠以及由于脉冲而导致的误差,固有地包括在内。量子计算机的时间演变是通过求解时间依赖性的schrödinger方程来获得的。模拟算法在高性能超级计算机上显示出极好的可扩展性。我们提出了模拟多达16个传输和谐振器的仿真结果。此外,该模型可用于模拟环境,我们演示了从隔离系统到由Lindblad Master方程控制的开放量子系统的过渡。我们还描述了一种从电磁模拟或实验中提取模型参数的程序。我们将仿真结果与对IBM Q体验的几个NISQ处理器进行的实验进行了比较。我们发现模拟和实验之间的几乎完美的一致性,用于探测Transmon系统中探测串扰的量子电路。通过研究诸如保真度或钻石距离之类的通用门指标,我们发现它们无法可靠地预测重复的栅极应用或实际量子算法的性能。作为替代方案,我们发现两种跨性别的栅极组合扫描术的结果具有出色的预测能力。最后,我们从量子误差校正和容错性理论中测试一项方案。我们发现该协议在存在特征控制和测量误差的情况下系统地改善了Transmon量子计算机的性能。

We develop a simulator for quantum computers composed of superconducting transmon qubits. The simulation model supports an arbitrary number of transmons and resonators. Quantum gates are implemented by time-dependent pulses. Nontrivial effects such as crosstalk, leakage to non-computational states, entanglement between transmons and resonators, and control errors due to the pulses are inherently included. The time evolution of the quantum computer is obtained by solving the time-dependent Schrödinger equation. The simulation algorithm shows excellent scalability on high-performance supercomputers. We present results for the simulation of up to 16 transmons and resonators. Additionally, the model can be used to simulate environments, and we demonstrate the transition from an isolated system to an open quantum system governed by a Lindblad master equation. We also describe a procedure to extract model parameters from electromagnetic simulations or experiments. We compare simulation results to experiments on several NISQ processors of the IBM Q Experience. We find nearly perfect agreement between simulation and experiment for quantum circuits designed to probe crosstalk in transmon systems. By studying common gate metrics such as the fidelity or the diamond distance, we find that they cannot reliably predict the performance of repeated gate applications or practical quantum algorithms. As an alternative, we find that the results from two-transmon gate set tomography have an exceptional predictive power. Finally, we test a protocol from the theory of quantum error correction and fault tolerance. We find that the protocol systematically improves the performance of transmon quantum computers in the presence of characteristic control and measurement errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源