论文标题
ROS-NEURO在实时BCIS中进行EEG信号压缩的深卷积自动编码器的整合
ROS-Neuro Integration of Deep Convolutional Autoencoders for EEG Signal Compression in Real-time BCIs
论文作者
论文摘要
典型的基于EEG的BCI应用需要在嘈杂的脑电图通道上计算复杂功能,以有效地进行。深度学习算法能够直接从数据中学习灵活的非线性功能,并且它们不断的处理延迟非常适合将其部署到在线BCI系统中。但是,对于处理系统的抖动至关重要,为了避免无法预测的行为,可能会破坏系统的整体可用性。在本文中,我们提出了一种基于深卷积自动编码器的新型编码方法,该方法能够对原始EEG输入进行有效的压缩。我们将模型部署在ROS-Neuro节点中,因此使其适合在现实世界中基于ROS的BCI和机器人系统中的集成。实验结果表明,我们的系统能够生成有意义的压缩编码,以保存到原始输入中包含的原始信息。他们还表明,Ros-Neuro节点能够以最小的抖动以稳定的速度生成此类编码。我们认为,我们的系统可以代表开发有效的BCI处理管道在ROS-Neuro框架中完全标准化的重要一步。
Typical EEG-based BCI applications require the computation of complex functions over the noisy EEG channels to be carried out in an efficient way. Deep learning algorithms are capable of learning flexible nonlinear functions directly from data, and their constant processing latency is perfect for their deployment into online BCI systems. However, it is crucial for the jitter of the processing system to be as low as possible, in order to avoid unpredictable behaviour that can ruin the system's overall usability. In this paper, we present a novel encoding method, based on on deep convolutional autoencoders, that is able to perform efficient compression of the raw EEG inputs. We deploy our model in a ROS-Neuro node, thus making it suitable for the integration in ROS-based BCI and robotic systems in real world scenarios. The experimental results show that our system is capable to generate meaningful compressed encoding preserving to original information contained in the raw input. They also show that the ROS-Neuro node is able to produce such encodings at a steady rate, with minimal jitter. We believe that our system can represent an important step towards the development of an effective BCI processing pipeline fully standardized in ROS-Neuro framework.