论文标题

通过人造皮肤上的人形机器人的自我触摸进行人体模型学习的主动探索

Active exploration for body model learning through self-touch on a humanoid robot with artificial skin

论文作者

Gama, Filipe, Shcherban, Maksym, Rolf, Matthias, Hoffmann, Matej

论文摘要

婴儿发育的机制远非理解。了解自己的身体可能是后续发展的基础。在这里,我们特别研究了婴儿早期对身体的自发接触可能会引起第一身体模型和引导程序进一步发展(例如达到能力)的问题。与在视觉上引起的伸手可及,到达自己的身体只需要触觉和运动空间的连接,绕开视觉。尽管如此,电机系统的高维度和冗余的问题仍然存在。在这项工作中,我们在模拟的类人机器人机器人上介绍了一个体现的计算模型,并在其身体的大面积上具有人造敏感的皮肤。机器人应自主发展其体内每个触觉传感器的能力。为了有效地执行此操作,我们采用了目标bab骨的内在动机和变体的计算框架,而不是运动式bablobling,这证明可以使探索过程更快并减轻学习逆动力学的不良知识。基于我们的结果,我们讨论了与婴儿研究有关的下一步:在行为数据中进一步以这种计算模型为基础,需要哪些信息。

The mechanisms of infant development are far from understood. Learning about one's own body is likely a foundation for subsequent development. Here we look specifically at the problem of how spontaneous touches to the body in early infancy may give rise to first body models and bootstrap further development such as reaching competence. Unlike visually elicited reaching, reaching to own body requires connections of the tactile and motor space only, bypassing vision. Still, the problems of high dimensionality and redundancy of the motor system persist. In this work, we present an embodied computational model on a simulated humanoid robot with artificial sensitive skin on large areas of its body. The robot should autonomously develop the capacity to reach for every tactile sensor on its body. To do this efficiently, we employ the computational framework of intrinsic motivations and variants of goal babbling, as opposed to motor babbling, that prove to make the exploration process faster and alleviate the ill-posedness of learning inverse kinematics. Based on our results, we discuss the next steps in relation to infant studies: what information will be necessary to further ground this computational model in behavioral data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源