论文标题

Funmap:有效执行知识图创建功能映射

FunMap: Efficient Execution of Functional Mappings for Knowledge Graph Creation

论文作者

Jozashoori, Samaneh, Chaves-Fraga, David, Iglesias, Enrique, Vidal, Maria-Esther, Corcho, Oscar

论文摘要

在过去的几年中,数据已成倍增长,知识图构成了有力的形式主义,以整合无数现有的数据源。 Transformation functions -- specified with function-based mapping languages like FunUL and RML+FnO -- can be applied to overcome interoperability issues across heterogeneous data sources.但是,没有发动机有效执行这些映射语言阻碍了其全球采用。我们建议Funmap,这是基于功能的映射语言的解释器;它依靠一组无损重写规则来向下推动并实现知识图创建的初始步骤的函数执行。尽管适用于支持映射规则之间的任何基于功能的映射语言,但在RML+FNO上显示了Funmap的可行性。 FunMap减少了数据冗余,例如重复和未使用的属性,并将RML+FNO映射转换为一组在RML兼容发动机上可执行的等效规则。我们评估了来自生物医学领域的现实测试床的Funmap性能。结果表明,Funmap将符合RML的引擎的执行时间减少到18倍,从而提供了可扩展的知识图创建解决方案。

Data has exponentially grown in the last years, and knowledge graphs constitute powerful formalisms to integrate a myriad of existing data sources. Transformation functions -- specified with function-based mapping languages like FunUL and RML+FnO -- can be applied to overcome interoperability issues across heterogeneous data sources. However, the absence of engines to efficiently execute these mapping languages hinders their global adoption. We propose FunMap, an interpreter of function-based mapping languages; it relies on a set of lossless rewriting rules to push down and materialize the execution of functions in initial steps of knowledge graph creation. Although applicable to any function-based mapping language that supports joins between mapping rules, FunMap feasibility is shown on RML+FnO. FunMap reduces data redundancy, e.g., duplicates and unused attributes, and converts RML+FnO mappings into a set of equivalent rules executable on RML-compliant engines. We evaluate FunMap performance over real-world testbeds from the biomedical domain. The results indicate that FunMap reduces the execution time of RML-compliant engines by up to a factor of 18, furnishing, thus, a scalable solution for knowledge graph creation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源