论文标题
隐私保护分布式零订单优化
Privacy-Preserving Distributed Zeroth-Order Optimization
论文作者
论文摘要
我们开发一种隐私性分布式算法,以最大程度地减少一阶信息可用并在多代理网络上分发数据时,将正规的经验风险函数最小化。我们采用零阶方法,使用乘数的交替方向方法(ADMM)最大程度地减少原始域中相关的增强拉格朗日函数。我们表明,所提出的算法,命名为分布式零订单ADMM(D-ZOA)具有固有的隐私性属性。与基于ADMM的现有隐私保护方法不同,原始变量或双重变量受到噪声的扰动,由于使用Zeroth-rorder方法赋予D-ZOA固有的随机性D-ZOA具有内在的差异隐私。通过分析原始变量的扰动,我们表明提出的D-ZOA算法的隐私泄漏是有界的。此外,我们采用时刻的会计方法来表明,随着ADMM迭代次数的数量,总隐私泄漏会增长。 D-ZOA在准确性方面优于现有的差异私人方法,同时产生相同的隐私保证。我们证明,D-ZOA以$ \ MATHCAL {o}(1/m)$的速率收敛到最佳解决方案,其中$ m $是ADMM迭代的数量。融合分析还揭示了隐私和准确性之间实际上一个重要的权衡。仿真结果验证了D-ZOA所需的隐私性具有所需的隐私性及其优越性,其优越性比最先进的算法及其网络范围的收敛到最佳解决方案。
We develop a privacy-preserving distributed algorithm to minimize a regularized empirical risk function when the first-order information is not available and data is distributed over a multi-agent network. We employ a zeroth-order method to minimize the associated augmented Lagrangian function in the primal domain using the alternating direction method of multipliers (ADMM). We show that the proposed algorithm, named distributed zeroth-order ADMM (D-ZOA), has intrinsic privacy-preserving properties. Unlike the existing privacy-preserving methods based on the ADMM where the primal or the dual variables are perturbed with noise, the inherent randomness due to the use of a zeroth-order method endows D-ZOA with intrinsic differential privacy. By analyzing the perturbation of the primal variable, we show that the privacy leakage of the proposed D-ZOA algorithm is bounded. In addition, we employ the moments accountant method to show that the total privacy leakage grows sublinearly with the number of ADMM iterations. D-ZOA outperforms the existing differentially private approaches in terms of accuracy while yielding the same privacy guarantee. We prove that D-ZOA converges to the optimal solution at a rate of $\mathcal{O}(1/M)$ where $M$ is the number of ADMM iterations. The convergence analysis also reveals a practically important trade-off between privacy and accuracy. Simulation results verify the desirable privacy-preserving properties of D-ZOA and its superiority over a state-of-the-art algorithm as well as its network-wide convergence to the optimal solution.