论文标题

使用神经网络的集成对象并构成基于增强现实的人类援助系统的任务检测

Integrative Object and Pose to Task Detection for an Augmented-Reality-based Human Assistance System using Neural Networks

论文作者

Kästner, Linh, Eversberg, Leon, Mursa, Marina, Lambrecht, Jens

论文摘要

由于越来越自动化和数字化的行业,过程变得越来越复杂。增强现实表明,通过增强用户的理解和空间信息的经验来帮助工人完成复杂任务的潜力。但是,由于缺乏既定的方法和乏味的整合工作,AR在工业过程中的接受和集成仍然受到限制。同时,深度神经网络在计算机视觉任务中取得了显着的成果,并具有巨大的前景,以丰富增强的现实应用。在本文中,我们提出了一个基于增强的基于现实的人类援助系统,以协助工人完成复杂的手动任务,其中我们将深层的神经网络纳入了用于计算机视觉任务的深度。更具体地说,我们将增强现实与对象和动作探测器相结合,使工作流更直观和灵活。为了根据用户的接受和效率评估我们的系统,我们进行了一些用户研究。我们发现,未经训练的工人的任务完成时间大大减少,错误率下降。此外,我们通过协助系统调查了用户学习曲线。

As a result of an increasingly automatized and digitized industry, processes are becoming more complex. Augmented Reality has shown considerable potential in assisting workers with complex tasks by enhancing user understanding and experience with spatial information. However, the acceptance and integration of AR into industrial processes is still limited due to the lack of established methods and tedious integration efforts. Meanwhile, deep neural networks have achieved remarkable results in computer vision tasks and bear great prospects to enrich Augmented Reality applications . In this paper, we propose an Augmented-Reality-based human assistance system to assist workers in complex manual tasks where we incorporate deep neural networks for computer vision tasks. More specifically, we combine Augmented Reality with object and action detectors to make workflows more intuitive and flexible. To evaluate our system in terms of user acceptance and efficiency, we conducted several user studies. We found a significant reduction in time to task completion in untrained workers and a decrease in error rate. Furthermore, we investigated the users learning curve with our assistance system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源