论文标题
相位空间中的雅各比算法:对角(偏斜)哈密顿量和符号矩阵,带有狄拉克 - 马约拉纳矩阵
A Jacobi Algorithm in Phase Space: Diagonalizing (skew-) Hamiltonian and Symplectic Matrices with Dirac-Majorana Matrices
论文作者
论文摘要
Jacobi的方法是线性代数中众所周知的算法,可通过连续的基本旋转来对角线化对称矩阵。我们报告了这些基本旋转向作用于哈密顿相位空间的规范变换的概括。这种概括允许使用Jacobi的方法来通过连续的基本符号符号”符号符号符号“脱耦”传输来计算具有纯粹真实或纯粹想象中的特征值的哈密顿量(和偏斜 - 哈米尔顿)矩阵的特征值和特征向量。
Jacobi's method is a well-known algorithm in linear algebra to diagonalize symmetric matrices by successive elementary rotations. We report about the generalization of these elementary rotations towards canonical transformations acting in Hamiltonian phase spaces. This generalization allows to use Jacobi's method in order to compute eigenvalues and eigenvectors of Hamiltonian (and skew-Hamiltonian) matrices with either purely real or purely imaginary eigenvalues by successive elementary symplectic "decoupling"-transformations.