论文标题
旋转的热力学极限 - $ \ frac {1} {2} $ xyz自旋链带有反碘边界条件
Thermodynamic limit of the spin-$\frac{1}{2}$ XYZ spin chain with the antiperiodic boundary condition
论文作者
论文摘要
基于其非对角线的bethe ansatz解决方案,我们研究了旋转的热力学极限 - $ \ frac {1} {2} $ xyz自旋链,具有抗膜状边界条件。我们方法的关键点是,交叉参数$η_{m,l} $的一个退化点,其中相关的不均匀$ t-q $关系变成了同质。这使得推断从均质的公式到任意$η$,并以$ o(n^{ - 2})$校正为大$ n $。获得了系统的基础能量和基本激发。通过采用三角学极限,我们还给出了热力学极限中无间隙区域内反碘XXZ自旋链的结果,该链没有任何退化点。
Based on its off-diagonal Bethe ansatz solution, we study the thermodynamic limit of the spin-$\frac{1}{2}$ XYZ spin chain with the antiperiodic boundary condition. The key point of our method is that there exist some degenerate points of the crossing parameter $η_{m,l}$, at which the associated inhomogeneous $T-Q$ relation becomes a homogeneous one. This makes extrapolating the formulae deriving from the homogeneous one to an arbitrary $η$ with $O(N^{-2})$ corrections for a large $N$ possible. The ground state energy and elementary excitations of the system are obtained. By taking the trigonometric limit, we also give the results of antiperiodic XXZ spin chain within the gapless region in the thermodynamic limit, which does not have any degenerate points.