论文标题

常见的超循环性

Common frequent hypercyclicity

论文作者

Charpentier, Stéphane, Ernst, Romuald, Mestiri, Monia, Mouze, Augustin

论文摘要

我们为一系列运营商提供标准,以共享经常通用的向量。这些标准是经典频繁的高环境标准的变体,也是由于Grivaux,Matheron和Menet引起的最新标准的变体,而周期性点起着核心作用。作为一个应用程序,我们为在可分开的Banach空间上作用的特定运算符中的任何操作员t获得了{$λ$ T:$λ$ t:$λ$ t:$λ$ \ in $ $λ$}的必要且充分的条件,使其具有常见的超循环载体。顺便说一句,这使我们能够轻松地表现出频繁的超环体加权移位,而这些移位不具有常见的频繁高循环矢量。我们还为最近引入的C-Type运营商的家庭提供标准,以共享常见的高环向量。此外,我们证明,常见的$α$ - 频率高度循环性的问题可能是空虚的,其中$α$ - 弗拉德过度循环的概念扩展了频繁的高度循环性,从而通过更普遍的加权密度替代了自然密度。最后,众所周知,满足经典频繁通用标准的任何操作员对于满足适当条件的任何序列$α$而言都是$α$ fressive。我们通过证明任何此类操作员都存在一个vector x,即对于所有此类$α$,都存在$α$ forcemental的矢量X。

We provide with criteria for a family of sequences of operators to share a frequently universal vector. These criteria are variants of the classical Frequent Hypercyclicity Criterion and of a recent criterion due to Grivaux, Matheron and Menet where periodic points play the central role. As an application, we obtain for any operator T in a specific class of operators acting on a separable Banach space, a necessary and sufficient condition on a subset $Λ$ of the complex plane for the family {$λ$T : $λ$ $\in$ $Λ$} to have a common frequently hypercyclic vector. In passing, this permits us to easily exhibit frequent hypercyclic weighted shifts which do not possess common frequent hypercyclic vectors. We also provide with criteria for families of the recently introduced operators of C-type to share a common frequently hypercyclic vector. Further, we prove that the same problem of common $α$-frequent hypercyclicity may be vacuous, where the notion of $α$-frequent hypercyclicity extends that of frequent hypercyclicity replacing the natural density by more general weighted densities. Finally, it is already known that any operator satisfying the classical Frequent Universality Criterion is $α$-frequently universal for any sequence $α$ satisfying a suitable condition. We complement this result by showing that for any such operator, there exists a vector x which is $α$-frequently universal for T , with respect to all such $α$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源