论文标题
在cerh $ _ {0.5} $ _ {0.5} $ _5 $中的抗铁磁量子量关键点和无间隙的超导性之前的局部到量过渡
Localized-to-itinerant transition preceding antiferromagnetic quantum critical point and gapless superconductivity in CeRh$_{0.5}$Ir$_{0.5}$In$_5$
论文作者
论文摘要
相关电子化合物的研究提出了一个基本问题,其中重点是原型,是要了解量子临界点附近的状态物理学(QCP)。在QCP下,磁性阶持续抑制至零温度,并且经常出现非常规的超导性。在这里,我们报告了核Quadrupole共振(NQR)的压力($ p $) - 依赖性$^{115} $在heater -ferromagnet cerh $ _ {0.5} $ ir $ _ {0.5} $ in $ _5 $中。这些实验揭示了$ p _ {\ rm c}^{\ rm af} $ = 1.2 gpa的抗铁磁性(AF)QCP,其中超导性达到最大过渡温度$ t _ {\ rm c} $。 Preceding $P_{\rm c}^{\rm AF}$, however, the NQR frequency $ν_{\rm Q}$ undergoes an abrupt increase at $P_{\rm c}^{\rm *}$ = 0.8 GPa in the zero-temperature limit, indicating a change from localized to itinerant character of cerium's费米表面的$ f $ - 电子和相关的小型变化。优化了$ p _ {\ rm c}^{\ rm af} $,其中优化了$ t _ {\ rm c} $,存在着一个异常大的无间隙激发,远低于$ t _ {\ rm c} $,这意味着暗示spinlet,奇怪的频率配对对称。
A fundamental problem posed from the study of correlated electron compounds, of which heavy-fermion systems are prototypes, is the need to understand the physics of states near a quantum critical point (QCP). At a QCP, magnetic order is suppressed continuously to zero temperature and unconventional superconductivity often appears. Here, we report pressure ($P$) -dependent $^{115}$In nuclear quadrupole resonance (NQR) measurements on heavy-fermion antiferromagnet CeRh$_{0.5}$Ir$_{0.5}$In$_5$. These experiments reveal an antiferromagnetic (AF) QCP at $P_{\rm c}^{\rm AF}$ = 1.2 GPa where a dome of superconductivity reaches a maximum transition temperature $T_{\rm c}$. Preceding $P_{\rm c}^{\rm AF}$, however, the NQR frequency $ν_{\rm Q}$ undergoes an abrupt increase at $P_{\rm c}^{\rm *}$ = 0.8 GPa in the zero-temperature limit, indicating a change from localized to itinerant character of cerium's $f$-electron and associated small-to-large change in the Fermi surface. At $P_{\rm c}^{\rm AF}$ where $T_{\rm c}$ is optimized, there is an unusually large fraction of gapless excitations well below $T_{\rm c}$ that implicates spin-singlet, odd-frequency pairing symmetry.