论文标题
优化您评估的内容:直接优化红外指标的简单而有效的框架
Optimize What You Evaluate With: A Simple Yet Effective Framework For Direct Optimization Of IR Metrics
论文作者
论文摘要
学习到级别的研究已经进行了深入的研究,并且显示出广泛的域中值大大增加了值。通常使用对等级敏感的指标(例如平均精度(AP)和归一化折扣累积增益(NDCG))评估学习到级别方法的性能。不幸的是,如何有效地优化对等级敏感的目标远非解决,这是自十年前学习到级别以来的一个空旷的问题。在本文中,我们引入了一个简单而有效的框架,用于直接优化信息检索(IR)指标。具体而言,我们提出了一种新型的双sigmoid函数,用于在优化过程中得出证实文档的确切等级位置,而不是使用近似等级位置或依靠传统的排序算法。因此,等级位置是可区分的,使我们能够将广泛使用的红外指标重新制定为可区分的指标,并基于神经网络直接优化它们。此外,通过对梯度进行深入分析,我们通过基于香草sigmoid的直接优化IR指标来查明固有的潜在局限性。为了打破局限性,我们通过明确修改梯度计算来提出不同的策略。为了验证提出的直接优化IR指标的框架的有效性,我们对广泛使用的基准集合MSLRWEB30K进行了一系列实验。
Learning-to-rank has been intensively studied and has shown significantly increasing values in a wide range of domains. The performance of learning-to-rank methods is commonly evaluated using rank-sensitive metrics, such as average precision (AP) and normalized discounted cumulative gain (nDCG). Unfortunately, how to effectively optimize rank-sensitive objectives is far from being resolved, which has been an open problem since the dawn of learning-to-rank over a decade ago. In this paper, we introduce a simple yet effective framework for directly optimizing information retrieval (IR) metrics. Specifically, we propose a novel twin-sigmoid function for deriving the exact rank positions of documents during the optimization process instead of using approximated rank positions or relying on the traditional sorting algorithms. Thanks to this, the rank positions are differentiable, enabling us to reformulate the widely used IR metrics as differentiable ones and directly optimize them based on neural networks. Furthermore, by carrying out an in-depth analysis of the gradients, we pinpoint the potential limitations inherent with direct optimization of IR metrics based on the vanilla sigmoid. To break the limitations, we propose different strategies by explicitly modifying the gradient computation. To validate the effectiveness of the proposed framework for direct optimization of IR metrics, we conduct a series of experiments on the widely used benchmark collection MSLRWEB30K.