论文标题

varifocalnet:iou-ware密集的对象检测器

VarifocalNet: An IoU-aware Dense Object Detector

论文作者

Zhang, Haoyang, Wang, Ying, Dayoub, Feras, Sünderhauf, Niko

论文摘要

准确地对大量候选检测进行排名对于密集的对象探测器以实现高性能至关重要。先前的工作使用分类评分或分类和预测本地化分数的组合来对候选人进行排名。但是,这两个选项都会导致可靠的排名,从而降低检测性能。在本文中,我们建议学习一个Iou-Aware分类评分(IACS)作为对象存在置信度和本地化准确性的联合表示。我们表明,密集的对象探测器可以根据IACS获得更准确的候选检测排名。我们设计了一个新的损失函数,称为Varifocal损失,以训练一个密集的对象检测器预测IACS,并为IACS预测和边界框改进提供了一个新的星形边界框特征表示。结合了这两个新组件和一个边界框改进分支,我们根据FCOS+ATSS体系结构构建了一个iOuweawe的密集对象检测器,我们将其称为VarifoCalnet或VFNet简称。对Coco女士的广泛实验表明,我们的VFNET始终超过$ \ sim $ \ sim $ 2.0 AP,具有不同的骨架。我们使用RES2NET-101-DCN的最佳型号VFNET-X-1200在可可Test-DEV上实现了55.1的单模型单尺度AP,这是各种对象检测器中最新的ART.code。可在https://github.com/github.com/hyz-xmaster/varifocalnet上找到。

Accurately ranking the vast number of candidate detections is crucial for dense object detectors to achieve high performance. Prior work uses the classification score or a combination of classification and predicted localization scores to rank candidates. However, neither option results in a reliable ranking, thus degrading detection performance. In this paper, we propose to learn an Iou-aware Classification Score (IACS) as a joint representation of object presence confidence and localization accuracy. We show that dense object detectors can achieve a more accurate ranking of candidate detections based on the IACS. We design a new loss function, named Varifocal Loss, to train a dense object detector to predict the IACS, and propose a new star-shaped bounding box feature representation for IACS prediction and bounding box refinement. Combining these two new components and a bounding box refinement branch, we build an IoU-aware dense object detector based on the FCOS+ATSS architecture, that we call VarifocalNet or VFNet for short. Extensive experiments on MS COCO show that our VFNet consistently surpasses the strong baseline by $\sim$2.0 AP with different backbones. Our best model VFNet-X-1200 with Res2Net-101-DCN achieves a single-model single-scale AP of 55.1 on COCO test-dev, which is state-of-the-art among various object detectors.Code is available at https://github.com/hyz-xmaster/VarifocalNet .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源