论文标题
可分离的$ \ mathrm {k} $ - 可分离的C*-Algebras的同源性
Definable $\mathrm{K}$-homology of separable C*-algebras
论文作者
论文摘要
在本文中,我们表明,可分开的C*-Algebra的$ \ MathRM {K} $ - 可以富含其他描述性的理论信息,并被视为可定义的组。使用通用系数定理的可定义版本,我们证明相应的可定义$ \ mathrm {k} $ - 同源性是比纯代数的纯粹不变性的,即使仅限于UHF C*algebras或属于Unital Compontative C*-Algebras的类别的UHF C*-Algebras或类别的$ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1。 $ \ mathbb {r}^{3} $。
In this paper we show that the $\mathrm{K}$-homology groups of a separable C*-algebra can be enriched with additional descriptive set-theoretic information, and regarded as definable groups. Using a definable version of the Universal Coefficient Theorem, we prove that the corresponding definable $\mathrm{K}$-homology is a finer invariant than the purely algebraic one, even when restricted to the class of UHF C*-algebras, or to the class of unital commutative C*-algebras whose spectrum is a $1$-dimensional connected subspace of $\mathbb{R}^{3}$.