论文标题

多体动力学的神经网络变异量子算法

A Neural-Network Variational Quantum Algorithm for Many-Body Dynamics

论文作者

Lee, Chee-Kong, Patil, Pranay, Zhang, Shengyu, Hsieh, Chang-Yu

论文摘要

我们提出了一种神经网络变化量子算法,以模拟量子多体系统的时间演变。基于修改的限制性玻尔兹曼机(RBM)波函数ANSATZ,可以在近期量子计算机中有效实现所提出的算法,其测量成本较低。使用Qubit回收策略,仅需要一个Ancilla量子量子来表示RBM体系结构中的所有隐藏旋转。通过使用随机的Schrodinger方程方法,将变分算法扩展到打开量子系统。自旋晶格模型的数值模拟表明,我们的算法能够捕获封闭和开放的量子多体系统的动力学,而没有遇到消失的梯度(或“贫瘠的高原”)问题,以实现所考虑的系统尺寸。

We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems. Based on a modified restricted Boltzmann machine (RBM) wavefunction ansatz, the proposed algorithm can be efficiently implemented in near-term quantum computers with low measurement cost. Using a qubit recycling strategy, only one ancilla qubit is required to represent all the hidden spins in an RBM architecture. The variational algorithm is extended to open quantum systems by employing a stochastic Schrodinger equation approach. Numerical simulations of spin-lattice models demonstrate that our algorithm is capable of capturing the dynamics of closed and open quantum many-body systems with high accuracy without suffering from the vanishing gradient (or 'barren plateau') issue for the considered system sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源