论文标题
与Caffarelli-Kohn-Nirenberg不平等有关的一类准线性椭圆方程的解决方案的规律性
Regularity of solutions for a class of quasilinear elliptic equations related to Caffarelli-Kohn-Nirenberg inequality
论文作者
论文摘要
本文涉及一类准线性椭圆方程,涉及与Caffarelli-Korn-Nirenberg不平等相关的一些潜力。我们通过使用经典的De Giorgi技术证明了弱解决方案的局部界限和Hölder连续性。我们的结果扩展了Serrin \ cite {Serrin64}和Corolado和Peral \ cite {cp04}的结果。
This paper is concerned with a class of quasilinear elliptic equations involving some potentials related to the Caffarelli-Korn-Nirenberg inequality. We prove the local boundedness and Hölder continuity of weak solutions by using the classical De Giorgi techniques. Our result extends the results of Serrin \cite{Serrin64} and Corolado and Peral \cite{CP04}.