论文标题

基准测量地面导航

Benchmarking Metric Ground Navigation

论文作者

Perille, Daniel, Truong, Abigail, Xiao, Xuesu, Stone, Peter

论文摘要

公制地面导航解决了以无碰撞方式在障碍物占用的平面环境中自主将机器人从一个点移至另一点的问题。它是智能移动机器人最基本的功能之一。本文提出了一个标准化的测试台,其中包含一组环境和指标,以基于不同方案的难度和不同度量集接地系统的性能的难度。当前的基准测试集中在移动机器人导航的各个组件上,例如感知和州估计,但是整体导航性能很少以系统的和标准化的方式衡量。结果,通常以临时方式测试和比较导航系统,例如在一个或两个手动选择的环境中。引入的基准为公制世界中的地面机器人导航提供了一般测试床。自主机器人导航(BARN)数据集的基准包括300个导航环境,这些导航环境由一组难度指标订购。可以以系统和客观的方式在这些环境中测试和比较导航性能。该基准测试可用于预测新环境的导航难度,比较导航系统,并有可能用作成本功能和基于计划和基于学习的导航系统的成本功能和课程。我们已经发布了我们的数据集和源代码,以在www.cs.utexas.edu/~xiao/barn/barn/barn.html上为不同的机器人足迹生成数据集。

Metric ground navigation addresses the problem of autonomously moving a robot from one point to another in an obstacle-occupied planar environment in a collision-free manner. It is one of the most fundamental capabilities of intelligent mobile robots. This paper presents a standardized testbed with a set of environments and metrics to benchmark difficulty of different scenarios and performance of different systems of metric ground navigation. Current benchmarks focus on individual components of mobile robot navigation, such as perception and state estimation, but the navigation performance as a whole is rarely measured in a systematic and standardized fashion. As a result, navigation systems are usually tested and compared in an ad hoc manner, such as in one or two manually chosen environments. The introduced benchmark provides a general testbed for ground robot navigation in a metric world. The Benchmark for Autonomous Robot Navigation (BARN) dataset includes 300 navigation environments, which are ordered by a set of difficulty metrics. Navigation performance can be tested and compared in those environments in a systematic and objective fashion. This benchmark can be used to predict navigation difficulty of a new environment, compare navigation systems, and potentially serve as a cost function and a curriculum for planning-based and learning-based navigation systems. We have published our dataset and the source code to generate datasets for different robot footprints at www.cs.utexas.edu/~xiao/BARN/BARN.html.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源