论文标题
局部适应性和全球分析性,用于通用0方程的解决方案
Local well-posedness and global analyticity for solutions of a generalized 0-equation
论文作者
论文摘要
在这项工作中,我们研究了Gevrey空间中的Cauchy问题,用于包含$ b $ equ的case $ b = 0 $的一般方程式。对于广义方程式,我们证明它在Gevrey空间中的初始数据局域存在良好。此外,随着我们转向全局良好的性能,我们表明,对于方程式中参数的特定选择,本地解决方案在时间和空间变量上都是全局分析。
In this work we study the Cauchy problem in Gevrey spaces for a generalized class of equations that contains the case $b=0$ of the $b$-equation. For the generalized equation, we prove that it is locally well-posed for initial data in Gevrey spaces. Moreover, as we move to global well-posedness, we show that for a particular choice of the parameter in the equation the local solution is global analytic in both time and spatial variables.