论文标题
一维拓扑表中的边缘模式可保存自旋三个超导体:伯特·安萨兹(Bethe Ansatz)的确切结果
Edge Modes in One Dimensional Topological Charge Conserving Spin-Triplet Superconductors: Exact Results from Bethe Ansatz
论文作者
论文摘要
$ u(1)$对称性的汉密尔顿人描述了一个维护旋转单线和旋转三胞胎超导体。我们通过Bethe Ansatz在A有限线段上使用开放边界条件解决模型。我们表明,当大体位于自旋三重态超导阶段时,基态显示出四倍的变性。这种退化性对应于在边缘的零能量边界结合状态的存在,这是根据先前的半古典分析,这是由于Kesselman和Berg \ cite {Keselman2015}而导致的,这是由于存在于两个系统的分数spin $ \ pm 1/4 $的存在。
Charge conserving spin singlet and spin triplet superconductors in one dimension are described by the $U(1)$ symmetric Thirring Hamiltonian. We solve the model with open boundary conditions on the a finite line segment by means of the Bethe Ansatz. We show that the ground state displays a fourfold degeneracy when the bulk is in the spin triplet superconducting phase. This degeneracy corresponds to the existence of zero energy boundary bound states localized at the edges which may be interpreted, in the light of the previous semi-classical analysis due to Kesselman and Berg \cite{Keselman2015}, as resulting from the existence of fractional spin $\pm 1/4$ localized at the two edges of the system.