论文标题
一般视频游戏中的滚动地平线EAS基于统计树的种子种子
Statistical Tree-based Population Seeding for Rolling Horizon EAs in General Video Game Playing
论文作者
论文摘要
近年来,已经提出了多种人工智能(AI)方法,以创建控制器来玩不同性质和复杂性的多个视频游戏,而没有向AI方法揭示这些游戏的特定机制。近年来,采用滚动地平线机制的进化算法(EAS)在这些类型的问题中取得了非凡的结果。但是,在Rolling Horizon EAS中存在一些局限性,使其成为AI的巨大挑战。这些局限性包括创建人口并在一秒钟内将其不断发展的浪费机制,以提出一项由游戏代理执行的措施。另一个限制是使用标量值(适应性值)来指导进化搜索,而不是考虑一种机制,该机制告诉我们特定代理在滚动范围模拟中的行为。在这项工作中,我们解决了这两个问题。我们介绍了解决后一种限制的统计树的使用。此外,我们通过采用一种使我们可以使用Monte Carlo Tree Search播种人口的机制来应对以前的限制,该方法已经主导了多个通用视频游戏AI竞赛。我们展示了所提出的新机制如何称为基于统计树的种子播种,与香草滚动地平线EAS相比,在一组20场游戏中,取得了更好的结果,其中包括10场随机性和10个确定性游戏。
Multiple Artificial Intelligence (AI) methods have been proposed over recent years to create controllers to play multiple video games of different nature and complexity without revealing the specific mechanics of each of these games to the AI methods. In recent years, Evolutionary Algorithms (EAs) employing rolling horizon mechanisms have achieved extraordinary results in these type of problems. However, some limitations are present in Rolling Horizon EAs making it a grand challenge of AI. These limitations include the wasteful mechanism of creating a population and evolving it over a fraction of a second to propose an action to be executed by the game agent. Another limitation is to use a scalar value (fitness value) to direct evolutionary search instead of accounting for a mechanism that informs us how a particular agent behaves during the rolling horizon simulation. In this work, we address both of these issues. We introduce the use of a statistical tree that tackles the latter limitation. Furthermore, we tackle the former limitation by employing a mechanism that allows us to seed part of the population using Monte Carlo Tree Search, a method that has dominated multiple General Video Game AI competitions. We show how the proposed novel mechanism, called Statistical Tree-based Population Seeding, achieves better results compared to vanilla Rolling Horizon EAs in a set of 20 games, including 10 stochastic and 10 deterministic games.