论文标题

使用神经形态计算的浮点乘法

Floating-Point Multiplication Using Neuromorphic Computing

论文作者

Dubey, Karn, Kothari, Urja, Rao, Shrisha

论文摘要

神经形态计算描述了使用VLSI系统在模仿神经生物结构中的使用,也被视为传统von Neumann架构的有前途替代方案。任何新的计算体系结构都需要一个可以执行浮点算术的系统。在本文中,我们描述了执行IEEE 754符合浮点乘积的神经形态系统。复杂的乘法过程被分为由组件指数加法器,偏减,Mantissa乘法器和/uf的符号执行的较小子任务。我们研究每位神经元数量对准确性和位错误率的影响,并估算每个组件所需的最佳神经元数。

Neuromorphic computing describes the use of VLSI systems to mimic neuro-biological architectures and is also looked at as a promising alternative to the traditional von Neumann architecture. Any new computing architecture would need a system that can perform floating-point arithmetic. In this paper, we describe a neuromorphic system that performs IEEE 754-compliant floating-point multiplication. The complex process of multiplication is divided into smaller sub-tasks performed by components Exponent Adder, Bias Subtractor, Mantissa Multiplier and Sign OF/UF. We study the effect of the number of neurons per bit on accuracy and bit error rate, and estimate the optimal number of neurons needed for each component.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源