论文标题

Seifert光纤操作员的3D-3D对应关系

3D-3D Correspondence from Seifert Fibering Operators

论文作者

Fan, Yale

论文摘要

使用最近开发的3D $ \ Mathcal {n} = 2 $量学理论的Seifert光纤操作员,我们为在3D-3D通信下为给定的Seifert歧管的拓扑量子场理论的状态综合模型制定了必要的成分,重点介绍了Seifert spheres与Seifert spheres Spheres at Seifert spheres atseifert spheres at Seifert spheres atseifert spheres at seifert spheres astority Orbififord eulbiford euller tremitications。我们进一步展示了一组差异算子,这些差异算子在双曲线三序中歼灭了该TQFT的波形,从而概括了透镜空间分区功能和全体形态块的相似构造。这些属性为基础TQFT的结构提供了有趣的线索。

Using recently developed Seifert fibering operators for 3D $\mathcal{N} = 2$ gauge theories, we formulate the necessary ingredients for a state-integral model of the topological quantum field theory dual to a given Seifert manifold under the 3D-3D correspondence, focusing on the case of Seifert homology spheres with positive orbifold Euler characteristic. We further exhibit a set of difference operators that annihilate the wavefunctions of this TQFT on hyperbolic three-manifolds, generalizing similar constructions for lens space partition functions and holomorphic blocks. These properties offer intriguing clues as to the structure of the underlying TQFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源