论文标题

物联网传感的缓存瞬态含量:多代理软演员 - 批评

Caching Transient Content for IoT Sensing: Multi-Agent Soft Actor-Critic

论文作者

Wu, Xiongwei, Li, Xiuhua, Li, Jun, Ching, P. C., Leung, Victor C. M., Poor, H. Vincent

论文摘要

物联网中的边缘节点(ENS)通常用作缓存传感数据的网关,同时为数据消费者提供访问服务。本文认为,在云协调下,缓存传感数据的多个ENS。特别是,每个EN都可以获取由传感器在其覆盖范围内生成的内容,可以通过Fronthaul将其上传到云中,然后将其传递到沟通范围之外的其他ENS。但是,传感数据通常是随时间瞬时的,而频繁的高速缓存更新可能会导致传感器和领先的交通负载的大量能源消耗。因此,我们采用信息年龄来评估数据新鲜度并研究智能缓存政策,以保留数据新鲜度,同时降低缓存更新成本。具体而言,我们将缓存更新问题建模为合作的多代理马尔可夫决策过程,目的是最大程度地减少长期平均加权成本。为了有效地处理指数大量的动作,我们设计了一种新颖的强化学习方法,这是软性参与者 - 评论(SAC)的离散多代理变体。此外,我们将所提出的方法推广到分散的控制中,在该控制中,每个EN只能基于局部观察做出决定。仿真结果证明了拟议的基于SAC的缓存方案的卓越性能。

Edge nodes (ENs) in Internet of Things commonly serve as gateways to cache sensing data while providing accessing services for data consumers. This paper considers multiple ENs that cache sensing data under the coordination of the cloud. Particularly, each EN can fetch content generated by sensors within its coverage, which can be uploaded to the cloud via fronthaul and then be delivered to other ENs beyond the communication range. However, sensing data are usually transient with time whereas frequent cache updates could lead to considerable energy consumption at sensors and fronthaul traffic loads. Therefore, we adopt age of information to evaluate data freshness and investigate intelligent caching policies to preserve data freshness while reducing cache update costs. Specifically, we model the cache update problem as a cooperative multi-agent Markov decision process with the goal of minimizing the long-term average weighted cost. To efficiently handle the exponentially large number of actions, we devise a novel reinforcement learning approach, which is a discrete multi-agent variant of soft actor-critic (SAC). Furthermore, we generalize the proposed approach into a decentralized control, where each EN can make decisions based on local observations only. Simulation results demonstrate the superior performance of the proposed SAC-based caching schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源