论文标题
基于马赫原理
A New Approach to Flatness, Horizon and Late-time Accelerating Expansion Problems on the basis of Mach Principle
论文作者
论文摘要
基于以下想法:宇宙学度量的组成部分可以取决于宇宙的总重力潜力,标量场$ ϕ = 1/g $在Jordan-Brans-Dicke(JBD)理论中是由量表因子的倒数平方介导的。由于引力电位与MACH原理产生的场$ ϕ $有关,并且取决于空间的扩展,因此该场的时间演变应与度量张量的时间和空间间隔的演变相符。出于相同的原因,该场的时间依赖性使得这些间隔间隔相对时间轴上的不同点。因此,可以表明,将宇宙引力电位作为时间依赖的标量场的引入与$ 1/a^2 $成比例的量表可能可以解决宇宙学标准模型的平坦度,地平线和延迟加速膨胀问题。 IA型超新星的光度距离与红移数据与这种方法一致。
Based on the idea that the components of a cosmological metric may be determined by the total gravitational potential of the universe, the scalar field $ϕ=1/G$ in the Jordan-Brans-Dicke (JBD) theory is introduced as evolving with the inverse square of the scale factor. Since the gravitational potential is related to the field $ϕ$ resulting from Mach's principle and depends on time due to the expansion of space, the temporal evolution of the field should be in accord with the evolution of time and space intervals in the metric tensor. For the same reason, the time dependence of the field makes these comoving intervals relative for different points on the time axis. Thus, it is shown that introduction of the cosmic gravitational potential as a time dependent scalar field proportional to $1/a^2$ may resolve the flatness, the horizon and the late-time accelerating expansion problems of the standard model of cosmology. The luminosity distance vs redshift data of Type Ia supernovae is in agreement with this approach.