论文标题

关于对称张量类别的同时学的主要特征

On cohomology in symmetric tensor categories in prime characteristic

论文作者

Benson, David, Etingof, Pavel

论文摘要

我们在特征$ p $的字段上描述了分级的交换性Gorenstein代数$ {\ MATHCAL E} _n(P)$,我们可以猜想$ \ Mathrm {ext}^\ buleast _ {\ mathsf {\ mathsf {ver} e} _ {n}(p)$,其中$ \ mathsf {ver} _ {p^{n+1}} $是最近在\ cite {benson/etingof:2019a,benson/etingof/etingof/etingof/ostrik,coulembier}中构建的新的对称张量类别。我们研究了这些代数的组合,以及与MINC的分区函数的关系,以及steenrod操作对它们的可能作用。 猜想的证据包括大量计算$ n $。我们还提供了一些理论证据。也就是说,我们使用Koszul构造来识别$ {\ Mathcal E} _n(p)$中的参数同质系统,其中具有$ \ Mathrm {Ext}^\ bullet _ {ext}^\ bullet _ {\ mathsf {\ mathsf {ver} _ {per} _ {这些参数的学位$ 2^i-1 $如果$ p = 2 $和$ 2(p^i-1)$如果$ p $是奇数,则$ 1 \ le i \ le n $。至少这表明,$ \ mathrm {ext}^\ bullet _ {\ mathsf {ver} _ {p^{n+1}}}}}}(1,1)$是有限生成的分级换向代数,其Krull dimension与$ {\ Mathcal E} _n(p)$。对于$ p = 2 $,我们还表明$ \ mathrm {ext}^\ bullet _ {\ Mathsf {ver} _ {2^{n+1}}}}(1,1)$具有预期的级别$ 2^{n(n(n(n(n(n(n)),n(n(n(n(n(n(n)),n(n(n(n(n(n(n(n(n),n(n(n(n(n(n(n(n(n(N)

We describe graded commutative Gorenstein algebras ${\mathcal E}_n(p)$ over a field of characteristic $p$, and we conjecture that $\mathrm{Ext}^\bullet_{\mathsf{Ver}_{p^{n+1}}}(1,1)\cong{\mathcal E}_{n}(p)$, where $\mathsf{Ver}_{p^{n+1}}$ are the new symmetric tensor categories recently constructed in \cite{Benson/Etingof:2019a,Benson/Etingof/Ostrik,Coulembier}. We investigate the combinatorics of these algebras, and the relationship with Minc's partition function, as well as possible actions of the Steenrod operations on them. Evidence for the conjecture includes a large number of computations for small values of $n$. We also provide some theoretical evidence. Namely, we use a Koszul construction to identify a homogeneous system of parameters in ${\mathcal E}_n(p)$ with a homogeneous system of parameters in $\mathrm{Ext}^\bullet_{\mathsf{Ver}_{p^{n+1}}}(1,1)$. These parameters have degrees $2^i-1$ if $p=2$ and $2(p^i-1)$ if $p$ is odd, for $1\le i \le n$. This at least shows that $\mathrm{Ext}^\bullet_{\mathsf{Ver}_{p^{n+1}}}(1,1)$ is a finitely generated graded commutative algebra with the same Krull dimension as ${\mathcal E}_n(p)$. For $p=2$ we also show that $\mathrm{Ext}^\bullet_{\mathsf{Ver}_{2^{n+1}}}(1,1)$ has the expected rank $2^{n(n-1)/2}$ as a module over the subalgebra of parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源